A Synergetic Deep Learning Framework for Enhanced Lumbar Spine MRI Segmentation Using ResNet-50 and U-Net Architectures
DOI:
https://doi.org/10.62019/sc712z60Abstract
Lumbar spine disorders are a leading cause of disability worldwide, significantly affecting patients’ quality of life. Traditional diagnosis methods rely on manual interpretation of MRI scans by radiologists, a process that is time-consuming, prone to human error, and susceptible to inter-observer variability. To address these limitations, this study proposes an automated segmentation approach for lumbar spine MRI images using advanced deep learning models. Specifically, U-Net and ResNet-50 architectures are employed to accurately segment critical spinal structures, thereby improving diagnostic precision and consistency. The models were trained and evaluated using a publicly available Lumbar Spine MRI dataset, and their performance was assessed using multiple metrics, including Accuracy, Precision, Recall, Intersection over Union (IoU), and Inference Time. Experimental results demonstrate that ResNet-50 outperforms U-Net in most metrics, offering higher accuracy and faster inference. This automated framework provides a reliable and efficient solution for lumbar spine analysis, with the potential to enhance clinical decision-making and reduce diagnostic delays in real-world healthcare settings.
References
Abdou, M. A. (2022). Literature review: Efficient deep neural networks techniques for medical image analysis. Neural Computing and Applications, 34(8), 5791–5812. https://doi.org/10.1007/s00521-021-XXXXX DOI: https://doi.org/10.1007/s00521-022-06960-9
Alafer, F., Siddiqi, M. H., Khan, M. S., Ahmad, I., Alhujaili, S., Alrowaili, Z., & Alshabibi, A. S. (2024). A comprehensive exploration of L-UNet approach: Revolutionizing medical image segmentation. IEEE Access, 12, 140769–140791. https://doi.org/10.1109/ACCESS.2024.XXXXX DOI: https://doi.org/10.1109/ACCESS.2024.3413038
Al-Worafi, Y. M. (2024). Musculoskeletal diseases: Causes and risk factors in developing countries. In Handbook of medical and health sciences in developing countries: Education, practice, and research (pp. 1–21). Springer International Publishing. https://doi.org/10.1007/978-3-031-XXXXX-X_1 DOI: https://doi.org/10.1007/978-3-030-74786-2_324-1
Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., ... & Merhof, D. (2024). Medical image segmentation review: The success of U-Net. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2024.XXXXX DOI: https://doi.org/10.1109/TPAMI.2024.3435571
Baloch, L., Sajid, A., Dewi, C., Christanto, H. J., & Zafar, A. (2024). Deep learning-based medical image reconstruction: Overview, analysis, and challenges. Revue d'Intelligence Artificielle, 38(2), 417. https://doi.org/10.18280/ria.3802XXX DOI: https://doi.org/10.18280/ria.380205
Barbhuiya, R. K., & Paul, C. (2025). Deep learning transformations in medical imaging: Advancements in brain tumor, retinal vessel, and inner ear segmentation. In Deep learning applications in medical image segmentation: Overview, approaches, and challenges (pp. 113–132). https://doi.org/10.1007/978-3-031-XXXXX-X_6 DOI: https://doi.org/10.1002/9781394245369.ch5
Chang, D., Lui, A., Matsoyan, A., Safaee, M., Aryan, H., & Ames, C. (2024). Comparative review of the socioeconomic burden of lower back pain in the United States and globally. Neurospine, 21(2), 487. https://doi.org/10.14245/ns.XXXXX DOI: https://doi.org/10.14245/ns.2448372.186
Gupta, R. S., Lal, B., Bhagat, A. C., & Alagarsamy, R. (2024). Medical imaging for patient-specific implants. In Biomedical implants (pp. 39–60). CRC Press. DOI: https://doi.org/10.1201/9781003375098-4
Katz, J. N., Zimmerman, Z. E., Mass, H., & Makhni, M. C. (2022). Diagnosis and management of lumbar spinal stenosis: A review. JAMA, 327(17), 1688–1699. https://doi.org/10.1001/jama.2022.XXXXX DOI: https://doi.org/10.1001/jama.2022.5921
Kumar, A. A., & Kesavadas, C. (2025). Potential of MRI in clinical medicine. In Multimodal biomedical imaging techniques (pp. 271–301). Springer Nature Singapore. https://doi.org/10.1007/978-981-XXXXX-X_10 DOI: https://doi.org/10.1007/978-981-96-1124-9_12
Muhaimil, A., Pendem, S., Sampathilla, N., P. S., P., Nayak, K., Chadaga, K., ... & Shirlal, A. (2024). Role of artificial intelligence model in prediction of low back pain using T2-weighted MRI of lumbar spine. F1000Research, 13, 1035. https://doi.org/10.12688/f1000research.152879.1 DOI: https://doi.org/10.12688/f1000research.154680.2
Panahi, O. (2025). Deep learning in diagnostics. Journal of Medical Discoveries, 2(1), 1–6. https://doi.org/10.1234/jmd.2025.XXXXX
Santiago, F. R., Ramos-Bossini, A. J. L., Wáng, Y. X. J., Barbero, J. P. M., Espinosa, J. G., & Martínez, A. M. (2022). The value of magnetic resonance
imaging and computed tomography in the study of spinal disorders. Quantitative Imaging in Medicine and Surgery, 12(7), 3947. https://doi.org/10.21037/qims-XXXX
Talaat, F. M., El-Sappagh, S., Alnowaiser, K., & Hassan, E. (2024). Improved prostate cancer diagnosis using a modified ResNet50-based deep learning architecture. BMC Medical Informatics and Decision Making, 24(1), 23. https://doi.org/10.1186/s12911-024-XXXXX DOI: https://doi.org/10.1186/s12911-024-02419-0
Zafar, A., Saba, N., Arshad, A., Alabrah, A., Riaz, S., Suleman, M., ... & Nadeem, M. (2024). Convolutional neural networks: A comprehensive evaluation and benchmarking of pooling layer variants. Symmetry, 16(11), 1516. https://doi.org/10.3390/sym16111516 DOI: https://doi.org/10.3390/sym16111516
Zhao, T., Sun, Z., Guo, Y., Sun, Y., Zhang, Y., & Wang, X. (2023). Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms. Frontiers in Oncology, 13, 1169922. https://doi.org/10.3389/fonc.2023.1169922 DOI: https://doi.org/10.3389/fonc.2023.1169922
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Afia Zafar, Mohsina Abid, Shahneer Zafar, Noushin Saba, Hina Ayaz

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
