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Remote sensing imaging is widely employed in a variety of sectors
including environmental science, national military security and its
excellent resolution and stable geometric elements make it ideal for
weather monitoring. When a remote monitoring sensor on a robotic
satellite collects terrestrial data, it is affected by the climate notably
clouds. Cloud cover influences the precision of opftically remote
sensing images. Existing cloud removal techniques for Sentinel-2 data
usually rely on basic image processing approaches which are
vulnerable to diverse cloud paftterns and struggle with accurate
reconstruction. Cloud removal from high-resolution remote sensing
satellite images is an important pre-processing step before analysis.
Addressing the issue of cloud contamination in Sentinel-2 imagery.
Sentinel-2 data is becoming more useful in a variety of disciplines,
including environmental monitoring, resource management and
disaster response. In the proposed framework, the deep learning
model was used for removing clouds from satellite imagery. Using the
SPA-GAN model, Sentinel-2 multispectral images were produced
without the presence of clouds. The proposed model was
implemented for image-to-image translation challenges. Moreover,
the SPA-GAN model produced realistic and high-quality images by
successfully preserving spatial characteristics. The experimental

results showed that the proposed model produced cloud-free
imagery and enabled precise observation of Earth. The proposed
model helps the researcher by identifying the cloud area to generate
high-quality cloudless imagery which enhances the visual data's
dependability and clarity.
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INTRODUCTION

Satellite imagery provides an unparalleled view of the Earth's surface, enabling
advancements in numerous fields such as environmental monitoring, agricultural
management, urban planning, and disaster response. The robust geometrical
characteristics and high resolution of optical remote sensing imaging make it
indispensable for these applications. However, a pervasive challenge compromises
this valuable data source: cloud cover. When a satellite sensor collects terrestrial
information, it is invariably influenced by atmospheric conditions, most notably clouds.
It is estimated that clouds cover approximately 35% of the Earth's surface annually,
leading fo a substantial loss of critical observational data [1]. Clouds act as a barrier,
scattering, reflecting, and absorbing solar radiation, which results in obscured ground
features and significantly impedes accurate image interpretation and processing.

The Imperative for Cloud Removal

The primary objective of cloud removal is to reconstruct the underlying surface
information obscured by atmospheric obstructions. This process is not merely an
aesthetic enhancement but a vital preprocessing step that unlocks the full analytical
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potential of satellite data. As illustrated in Fig. 1.1 the goal is to develop a model that
can take a cloudy image as input and produce a high-quality, cloud-free output,
thereby revealing the hidden landscape.

Clowd

Removal
Modol

Figure 1.
The conceptual model for cloud removal, which takes a cloudy satellite image as input and
generates a cloud-free image as output.

Taxonomy of Clouds in Remote Sensing

Clouds in satellite imagery manifest in various forms, each presenting distinct
challenges for detection and removal algorithms. They are generally categorized into
three primary types, as visualized in Fig. 1.2

v" Thin Clouds: These are partially translucent, allowing some spectral information of
the underlying ground features to be discerned. In such cases, recovery of the original
data from a single image is often feasible.

v" Thick Clouds: Characterized by their opacity and density, thick clouds completely
obscure the land surface. The information in these areas is entirely lost necessitating
the use of multi-temporal data from different dates for reconstruction.

v Cloud Shadows: These are dark regions on the ground caused by thick clouds
blocking direct sunlight. They often coexist with the clouds themselves and require
separate identification and correction

The critical importance of effective cloud removal is underscored by its wide-ranging
applications:

Monitoring Changes Through Time: Enables consistent fracking of dynamic processes
such as deforestation, glacier retreat, urbanization, and agricultural growth cycles

Accurate Land Cover and Land Use Mapping: Provides clear, unobstructed views
necessary for precise classification and mapping of forests, water bodies, soil types,
and urban infrastructure.

Disaster Management and Response: Delivers crucial, immediate, and unobstructed
imagery for rapidly assessing the extent of damage from floods, earthquakes, wildfires,
and other natural catastrophes.
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Figure 2.
Different types of clouds in satellite imagery: cloud shadow, thick cloud, and thin cloud (from
left to right).

Evolution of Cloud removal Techniques

Over the years, a multitude of methods have been developed to tackle the cloud
removal problem, which can be broadly classified into traditional and deep learning-
based approaches. Traditional techniques are further subdivided based on their
underlying methodology and use of reference data

Multi-spectral Methods: These techniques leverage the unique spectral signature of
clouds across different electromagnetic bands. They are often effective for removing
thin clouds but can result in hazy or imperfect reconstructions. Notable methods
include the Haze Optimal Transformation (HOT) and various approaches based on
the Radiation Transmission Model (RTM) [2].

Multi-temporal Methods: These approaches utilize multiple images of the same
geographical location captured at different fimes to reconstruct a cloud-free
composite. They are essential for removing thick clouds but operate on the critical
assumption that the land surface has not undergone significant change between the
acquisition dates.While these traditional methods have been foundational and are
still in use they possess inherent limitations[3]. They often involve complex manual
thresholding, struggle with the vast diversity of cloud patterns and underlying terrains,
and frequently lack generalizability across different geographical regions and seasons.

The Paradigm Shift: Deep Learning

The advent of deep learning has revolutionized the field of image processing, offering
a powerful, data-driven alternative to fraditional algorithms. Convolutional Neural
Networks (CNNs), in particular have demonstrated exceptional performance in tasks
such as image classification, segmentation, and restoration [4]. Their ability to
automatically learn hierarchical and multi-scale features directly from data makes
them exceptionally suitable for the complex, non-linear problem of cloud removal.



Model for Robust Cloud Removal Abdullah, Set al., (2025)

Input Layer Hidden Layers COutput Layer

Figure 3.

A standard architecture of a deep learning network, showcasing multiple layers for feature
extraction and transformation.

Among the various deep learning architectures, Generative Adversarial Networks
(GANs) have shown remarkable success in image-to-image translation tasks. In a GAN
framework, a generator network learns to create realistic cloud-free images from
cloudy inputs, while a discriminator network learns to distinguish these generated
images from real, cloud-free ones. This adversarial training process creates a
competitive environment that drives the generator to produce increasingly
convincing and high-fidelity results, effectively "filling in" the obscured regions with
semantically plausible content [5].

Despite the availability of various techniques, cloud cover remains a persistent and
significant obstacle in opftical satellite remote sensing. The core problems are
threefold:

Data Loss: Clouds obscure ground features, leading to gaps in spatial and temporal
data records.

Analytical Disruption: The presence of clouds disrupts the continuity of time-series data,
making it difficult to monitor environmental changes reliably.

Reduced Applicability: The utility of satellite imagery for critical applications in
agriculture, disaster management, and climate science is substantially diminished.

Therefore, there is a pressing need for a robust, automated, and generalizable
framework that can effectively remove clouds and accurately reconstruct the
underlying surface information to enhance the reliability, clarity and usability of
satellite data.

Research Objectives and Significance

The primary objective of this research is to develop and evaluate a deep learning-
based framework for the effective removal of clouds from Sentinel-2 multispectral
imagery. The significance of this work is multi-faceted: It aims to maximize the utility of
the unique and valuable observational data provided by satellites like Senfinel-2. By
producing cloud-free imagery, it enables more precise, comprehensive, and
continuous investigations into vital areas such as land cover mapping, vegetation
health monitoring, and urban sprawl analysis. It contributes to a clearer, more
complete, and uninterrupted view of the Earth, which is fundamental for advancing
scientific understanding, improving resource management, and supporting
sustainable development goals. By leveraging advanced deep learning models, this
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research seeks to overcome the limitations of traditional methods and deliver a
powerful and efficient tool for generating high-quality, cloud-free satellite imagery.

Existing Literature

The challenge of cloud contamination in optical satellite imagery has driven
significant research efforts, evolving from traditional threshold-based methods to
sophisticated deep learning paradigms. This review synthesizes the key developments
in cloud detection and removal, highlighting the transition to data-driven approaches
and the emergence of Generative Adversarial Networks (GANs) as a state-of-the-art
solution.

The Evolution of Cloud Detection

Early cloud removal methodologies were inherently dependent on accurate cloud
detection, or "cloud masking." Initial tfechniques relied on spectral thresholding and
physical models. For instance, [6] demonstrated that Artificial Neural Networks (ANNs)
could outperform standard processors like Fmask and Sen2Cor particularly in
challenging deep-water environments with high noise and sunglint, by effectively
utilizing bands like the 'cirrus' band. The advent of Convolutional Neural Networks
(CNNs) marked a significant leap forward. [7] proposed Cloud-AftU a U-Net-based
model incorporating an attention mechanism, which significantly improved
segmentation accuracy by enabling the network to focus on cloud-relevant features.
This theme of architectural refinement continued with [8], who infroduced the STCCD
network, a hybrid model combining Swin Transformers and CNNs to capture both local
and global features, thereby enhancing the detection of thin clouds and complex
cloud shapes. Further innovations focused on efficiency and accuracy under specific
conditions. [?] developed CD-FM3SF a lightweight network designed to handle all
Sentinel-2A spectral bands, improving multiscale feature extraction with minimal
computational overhead. For high-resolution imagery [10] conducted a
comprehensive comparison, finding that a U-Net-based CNN significantly
outperformed a Random Forest model, underscoring the importance of spatial
context in very high-resolution (VHR) image classification.

Paradigm Shift fo Deep Learning-Based Cloud Removal

While detection is crucial, the field has progressively shifted towards end-to-end
removal, directly reconstructing the underlying surface. Pioneering this approach [11]
proposed a Cloud-GAN that learned the mapping between cloudy and cloud-free
images using a cycle-consistent adversarial loss (CycleGAN), eliminating the need for
perfectly paired training data. This was a significant step towards practical
application. Subsequent research focused on enhancing the realism and fidelity of
the generated images. [12] infroduced an edge-filtered conditional GAN (MECGAN)
that incorporated Near-Infrared (NIR) band data and edge information to improve
the reconstruction of cloud-covered structures, demonstrating superior performance
in urban areas. Similarly, [13] proposed an Aftention-based Mechanism GAN
(AMGAN-CR) for Landsat 8 imagery, which generated a spatial attention map to
guide the network to focus on cloud-affected regions, outperforming several
benchmark models. To address the challenge of limited labeled data [14] developed
a semi-supervised, mutually beneficial guide network for thin cloud removal. This
architecture leveraged both labeled and unlabeled data, allowing two "benefactor"
networks to guide each other's training iteratively, leading to more robust
performance. For the critical task of thick cloud removal [15] infroduced the Spatially-
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and Spectrally-connective Tensor Decomposition (SSTC-CR) method, which
effectively exploited the complex multi-dimensional relationships in satellite imagery
to recover missing information with high colorimetric accuracy.

Synthesis and Research Gap

The literature confirms a clear trajectory from simple detection to complex, generative
removal. GAN-based architectures have established themselves as the forefront for
this task due to their ability to produce semantically plausible and realistic image
content. However, many models face challenges with generalizability, computational
complexity, and effectively leveraging the full information in multispectral data. This
research aims to build upon this foundation by implementing and evaluating a Spatial
Attention GAN (SPA-GAN), which is specifically designed to leverage spatial attention
mechanisms to focus on cloud-obscured regions within multispectral Sentinel-2
imagery, thereby contributing to the development of more efficient and accurate
cloud removal solutions.

Methodology: A Deep Learning Framework for Cloud Removal in
Multispectral Satellite Imagery

This section details the comprehensive methodology developed to address the
challenge of cloud occlusion in Sentinel-2 satellite imagery. The approach integrates
data acquisition, preprocessing, and a novel deep learning architecture to generate
high-quality, cloud-free multispectral images.

Experimental Workflow and Design

The study was designed to develop and validate a cloud removal framework
capable of processing Sentinel-2 multispectral data. The overarching goal was to
enhance data usability for applications in environmental monitoring, resource
management, and disaster response. The experimental workflow, illustrated in Figure
3.1, encompassed four primary phases: (1) environment configuration and library
setup, (2) data collection and preprocessing, (3) implementation and fraining of the
deep learning model, and (4) performance evaluation.

S> 4 @ —

= I 88 . oW ... i ... o
E >[%uEj > R >® >

Library imports Data collection Data Preprocessing initialization of GAN Results evaluation

import libraries such as collect data from preprocess data by Process Images in GAN calulate PSNR value and
matplotlib. NumPy, sentinel-2 and from changing size and model SSIM fron the GAN
keras and sklean Kaggle resulation processd data

Figure 4.
Overall experimental workflow for cloud removal.
Computational Environment and Software Stack

A reproducible computational environment was established using the Anaconda
Python distribution to ensure consistency and manage dependencies. The core
implementation and experimentation were conducted within Jupyter Notebooks,
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providing an interactive platform for iterative development and analysis. The software
stack, depicted in Figure 3.2, leveraged several critical libraries: TensorFlow and Keras
formed the foundation for building and training deep neural networks; OpenCV (cv2)
and NumPy were used for image manipulation and numerical computations;
Matplotlib facilitated the visualization of results; and the Glob module assisted in file
handling for batch processing. Authentication with the Google Earth Engine (GEE) API
was configured to enable direct access to satellite imagery.

JUpyter Quit | | Logout

Files Running Clusters

Select items to perform actions on them. Upload | New | &
(Jo - Wl Name ¥ | LastModified | | File size
O 0O new_file 2 days ago
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O & Untitled.ipynb 20 days ago 674 kB
gh loss_graph_000050 jpg amonthage  532kB
o0 loss_graph_000100 jpg amonthago  51.9kB
gh loss_graph_000150 jpg amonthage  522kB
o0 model_000050.h5 amonthago  2.05MB
gh model_000100.h5 amonthage  2.05MB
o0 model_000150.h5 amonthago  2.05MB
O [ plot_000050.png amonthago  126kB
O [ plot_000100.png amonthage  126kB
O [ plot_000150.png amonthage  1.26kB

Figure 5.

Schematic of the computational environment and software stack.

DATA ACQUISITION AND PREPROCESSING

Data Sources and Collection

A multi-source data strategy was employed to ensure model robustness and
generalizability. The primary data source was Sentinel-2 Level-1C satellite imagery,
accessed via the GEE platform. To construct a paired dataset for supervised learning,
image pairs of the same geographical area one with significant cloud cover and a
corresponding cloud-free reference were collected. This core dataset was
augmented with the public VIRSCLOUD_vanilla dataset  from Kaggle and
the RICE1 dataset, enriching the variety of cloud types and land cover scenarios.

Data Preprocessing Pipeline

All collected images underwent a standardized preprocessing pipeline. To maintain
uniformity and computational efficiency, images were resized to a fixed resolution of
512x512 pixels using bilinear interpolation within the GEE environment. The cloud-
contaminated and corresponding cloud-free images were then exported in the
Tagged Image File Format (TIFF) to preserve radiometric integrity and geospatial
information. This process, summarized in Figure 3.5, resulted in a curated dataset ready
for model training.
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Figure 6.

Data preprocessing pipeline for satellite imagery.

Dataset Characteristics
The final dataset possessed several key characteristics essential for effective deep
learning:

Multispectral Nature: It leveraged multiple spectral bands, allowing the model to
discriminate between clouds and underlying surfaces based on distinct spectral
signatures.

Structured Labels: The data was structured in a paired format (cloudy input, cloud-
free target), providing clear supervisory signals for training.

Spatial Complexity: The inclusion of diverse geographies and cloud formations
ensured the model learned to handle a wide array of real-world scenarios.

Deep Learning Architecture: Spatial Attention Generative Adversarial Network
(SPA-GAN)

The core of our methodology is a custom Generative Adversarial Network (GAN)
incorporating a spatial attention mechanism, termed SPA-GAN. The GAN framework
was chosen for its proven ability in image-to-image translation tasks.

Generative Adversarial Network Framework

The GAN, illustrated in Figure 3.7, consists of two neural networks frained simultaneously
in a competitive manner. The Generator (G) learns to map a cloudy input image to a
cloud-free output, while the Discriminator (D) learns to distinguish between the
generator's outputs and real cloud-free images. This adversarial process is formalized
by the objective function.

n}in max V(D,G) = Eqsp i llog D(z)] + E. () [log(1 — D(G(2)))]
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Hidden

Hidden

Figure 7.
Standard architecture of a Generative Adversarial Network (GAN).

SPA-GAN Generator with Spatial Altention

The generator in our SPA-GAN model is a deep neural network named the Spatial
Attention Network (SPANet). As shown in Figure 3.8, its architecture begins with a
convolutional layer, followed by a series of residual blocks and the novel Spatial
Attentive Blocks (SAB). The SAB, detailed in Figure 3.9, is designed to generate an
aftention map that identifies and weights cloud-covered regions. This allows the
network to focus its processing power on reconstructing the obscured areas,
significantly enhancing the recovery of fine spatial details. The network concludes
with standard residual blocks and a final convolutional layer that produces the cloud-
free image.

Generator samp Generat

or
lose

Discriminat
or

- Real \ Discrimi
samp nator
S % le lose
o ©
Figure 8.
Architecture of the Spatial Attention Network (SPANet) generator.
— — — —
CONY (—m CONV — CONnY
W

Figure 9.
Detailed structure of the Spatial Attentive Block (SAB).
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SPA-GAN Discriminator

The discriminator, outlined in Figure 3.11, is a convolutional neural network that
performs two critical functions. First, it classifies image patches as "real” or "generated.”
Second, and more importantly, it incorporates a spatial attention mechanism that
produces a feedback map highlighting regions where the generator's output lacks
realism. This focused feedback guides the generator to make more precise
improvements in subsequent training iterations.

ay % ' . W |

1 B R 1ok — B e o o B8 o

[T S s—_— | S, S

Figure 10.
Architecture of the SPA-GAN discriminator.

Model Training and Configuration

The SPA-GAN model was trained end-to-end using the prepared dataset. The training
process involved opftimizing both networks concurrently [16]. The generator was
trained to minimize the loss between its output and the target cloud-free image, while
also fooling the discriminator. The discriminator was trained to maximize its accuracy
in distinguishing real from generated images.

Key hyperparameters for the training process were meticulously selected
Optimizer: Adam optimizer was used for its adaptive learning rate capabilities
Learning Rate: A value of 5e-5 was chosen to ensure stable convergence.

Batch Size: Training was conducted with a batch size of 12, balancing GPU memory
constraints and gradient estimation stability.

Training Duration: The model was tfrained for 1500 epochs to ensure sufficient learning
and convergence.

Loss Functions: A combination of adversarial loss from the GAN framework and a pixel-
wise loss (e.g., Mean Squared Error) was used to ensure both perceptual quality and
pixel-level accuracy [17].

This comprehensive methodology establishes a robust foundation for generating
cloud-free Sentinel-2 imagery, leveraging advanced deep-learning techniques to
address a significant challenge in remote sensing.

Experimental Results and Analysis

This section presents a comprehensive evaluation of the proposed SPA-GAN model
for cloud removal in Sentinel-2 satellite imagery [18]. The performance is assessed
through both quantitative metrics and qualitative visual analysis, followed by a
discussion of the findings and their implications.

69



The Asian Bulletin of Big Data Management
Quantitative Performance Evaluation

5(4),60-75

To objectively evaluate the cloud removal capability of the SPA-GAN model, two
standard image quality assessment metrics were employed: Peak Signal-to-Noise
Ratfio (PSNR) and Structural Similarity Index (SSIM)[19]. The PSNR value of 22.64 dB
indicates that the model successfully reconstructed the underlying scene with
reasonable fidelity, though there remains room for improvement in exact pixel-value
matching. More significantly, the SSIM score of 0.60 demonstrates that the model
effectively preserved the structural information, texture and luminance patterns of the
original scene which is crucial for maintaining geospatial integrity in remote sensing
applications.
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Quantitative evaluation metrics (PSNR and SSIM) for cloud removal performance.
The progression of the SSIM metric throughout the fraining process, shown in Figure 4.2,
reveals a consistent improvement in structural preservation as fraining advanced, with

the metric stabilizihg after approximately 1200 epochs, indicating model
convergence.
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Training Dynamics and Model Convergence

The training process of the SPA-GAN model was monitored through the generator and
discriminator loss functions. Figure 4.3 illustrates the loss trajectory at epoch 1450
showing the characteristic oscillatory pattern of a well-functioning GAN where both
networks are competitively learning. By epoch 1500 (Figure 4.4) the losses had
stabilized, indicating that the model had reached a Nash equilibrium where neither

network could easily improve without the other adapting.

EPoch:1450. d110.000] A2(0.000] GL3.7 761 SSImi0.9241

d_loss1
— d_loss2
——— g_loss

Figure 13.
Generator and discriminator loss values at 1450 training epochs
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Figure 14,

Stabilized loss values at 1500 training epochs, indicating model convergence.

— d_lossl
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The model was trained with a batch size of 12 (Figure 4.5), which provided a balance
between computational efficiency and gradient stability. This configuration allowed
for effective learning while managing memory constraints during the extensive

training process.

def tf_dataset(traincloud, traingroundtruth,x):
BUFFER_SIZE = 1888
BATCH_SIZE = x
print(tf.rank(traincloud))

# Batch and shuffle the data
traincloud = tf.data.Dataset.from_tensor_slices(traincloud)
print(traincloud)
traingroundtruth = tf.data.Dataset.from_tensor_slices(traingroundtruth)
print(traingroundtruth)
return traincloud, traingroundtruth

Figure 15.
Batch size configuration for model training.
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Qualitative Visual Assessment

The visual results of the SPA-GAN model provide compelling evidence of its
effectiveness in cloud removal. Figure 4.6 demonstrates the model's capability to
remove extensive cloud cover while recovering underlying terrain features. The
generated image maintains spatial consistency and preserves important
geographical structures that were previously obscured.

Ground Truth
> VTl W e T o

100
200 ¢ 200
300

300

400 400

Figure 16.
Cloud removal results using SPA-GAN model. Left: Original cloudy image. Right: Processed
cloud-free output.

Comparative analysis with a baseline GAN approach (Figure 4.7) highlights the
advantages of the spatial attention mechanism in SPA-GAN. The standard GAN
produces blurrier reconstructions with less defined edges, whereas SPA-GAN
generates sharper results with better-preserved textures, particularly in regions
previously covered by thin clouds.
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200 a8 WO 3 Tl . 200
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Figure 17.
Comparison of cloud removal results between standard GAN (left) and SPA-GAN (right).

DISCUSSION

The experimental results demonstrate that the proposed SPA-GAN framework
effectively addresses the challenge of cloud removal in multispectral satellite imagery.
The integration of spatial attention mechanisms proves particularly valuable, as it
enables the model to focus computational resources on cloud-affected regions while
preserving intfact areas. This targeted approach explains the superior performance in
maintaining structural integrity, as reflected in the SSIM scores.The adversarial training
paradigm complemented by traditional pixel-wise losses, allows the model to learn
both the precise reconstruction of surface features and the photorealistic qualities of
cloud-free imagery. The extended training duration of 1500 epochs was necessary to
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achieve stable convergence, which is consistent with the complexity of learning
mappings between cloud-obscured and clear satellite scenes.The model shows
partficular proficiency in handling heterogeneous cloud coverage, successfully
removing both thick and thin clouds while recovering plausible terrain information. This
capability is crucial for practical applications in remote sensing, where cloud cover
often appears in varying densities across a single scene.However, some limitations
were observed. The PSNR score, while acceptable suggests that perfect pixel-level
reconstruction remains challenging, particularly in areas with complete cloud
occlusion where no ground information is available in the input. In such cases, the
model must hallucinate plausible content based on contextual information from
surrounding areas and learned patterns from the training data [22].

The qualitative results confirm that the model successfully maintains multispectral
characteristics in the output, which is essential for downstream applications such as
vegetation monitoring, land cover classification, and change detection. The
preserved structural similarity indicates that the generated imagery would be suitable
for analytical purposes beyond visual inspection.Future work could focus on
incorporating temporal information from multi-date satellite acquisitions to further
improve reconstruction accuracy, particularly in heavily cloud-obscured regions.
Additionally, exploring domain adaptation techniques could enhance the model's
generalization across different geographical regions and seasonal variations. The SPA-
GAN framework presents a robust solution for cloud removal in Sentinel-2 imagery,
effectively balancing quantitative performance with visual quality while maintaining
the structural integrity required for remote sensing applications [23].

CONCLUSION

This research successfully addressed the critical challenge of cloud occlusion in
multispectral satellite imagery by developing and implementing a deep learning-
based framework. The proposed method leverages a Spatial Attention Generative
Adversarial Network (SPA-GAN) to effectively remove clouds and reconstruct high-
quality, cloud-free images from Sentinel-2 data.

The study's key confributions and findings are summarized as follows:

v Effective Model Implementation: The SPA-GAN model was adeptly applied to
the image-to-image translation task of cloud removal. Its integrated spatial attention
mechanism proved crucial, enabling the model to focus on cloud-contaminated
regions and prioritize their reconstruction, thereby preserving essential spatial details
and textures of the underlying terrain.

v Robust Dataset Construction: A heterogeneous dataset was curated by
merging the VIRSCLOUDS-Vanilla dataset from Kaggle with real-world Sentinel-2
imagery. This strategy provided a diverse and rich training set encompassing a wide
variety of cloud types and land cover scenarios, which enhanced the model's
generalizability and robustness.

v Promising Performance: The model was rigorously trained over 1500 epochs and
evaluated using standard image quality metrics. The results demonstrated that SPA-
GAN is capable of generating realistic cloud-free imagery. Quantitative evaluations
using the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR)
confirmed the model's proficiency in maintaining structural integrity and reducing
visual artifacts in the reconstructed images.
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v Enhanced Data Usability: The successful removal of clouds significantly
improves the clarity and reliability of satellite data. This directly increases the usability
of Sentinel-2 imagery for time-series analysis and downstream applications, unlocking
its potential for precise environmental monitoring, agricultural management, and
effective disaster response.

In conclusion, this work establishes the SPA-GAN as a powerful and effective solution
for cloud removal in multispectral satellite imagery. The outcomes pave the way for
more accurate and unobstructed observation of the Earth's surface. Future work will
focus on optimizing the model for computational efficiency, testing its performance
on other satellite sensors, and further refining its ability to handle extreme cloud
coverage and complex landscapes.
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