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Remote sensing imaging is widely employed in a variety of sectors 

including environmental science, national military security and its 

excellent resolution and stable geometric elements make it ideal for 

weather monitoring. When a remote monitoring sensor on a robotic 

satellite collects terrestrial data, it is affected by the climate notably 

clouds. Cloud cover influences the precision of optically remote 

sensing images. Existing cloud removal techniques for Sentinel-2 data 

usually rely on basic image processing approaches which are 

vulnerable to diverse cloud patterns and struggle with accurate 

reconstruction. Cloud removal from high-resolution remote sensing 

satellite images is an important pre-processing step before analysis. 

Addressing the issue of cloud contamination in Sentinel-2 imagery. 

Sentinel-2 data is becoming more useful in a variety of disciplines, 

including environmental monitoring, resource management and 

disaster response. In the proposed framework, the deep learning 

model was used for removing clouds from satellite imagery. Using the 

SPA-GAN model, Sentinel-2 multispectral images were produced 

without the presence of clouds. The proposed model was 

implemented for image-to-image translation challenges. Moreover, 

the SPA-GAN model produced realistic and high-quality images by 

successfully preserving spatial characteristics. The experimental 

results showed that the proposed model produced cloud-free 

imagery and enabled precise observation of Earth. The proposed 

model helps the researcher by identifying the cloud area to generate 

high-quality cloudless imagery which enhances the visual data's 

dependability and clarity. 
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INTRODUCTION 

Satellite imagery provides an unparalleled view of the Earth's surface, enabling 

advancements in numerous fields such as environmental monitoring, agricultural 

management, urban planning, and disaster response. The robust geometrical 

characteristics and high resolution of optical remote sensing imaging make it 

indispensable for these applications. However, a pervasive challenge compromises 

this valuable data source: cloud cover. When a satellite sensor collects terrestrial 

information, it is invariably influenced by atmospheric conditions, most notably clouds. 

It is estimated that clouds cover approximately 35% of the Earth's surface annually, 

leading to a substantial loss of critical observational data [1]. Clouds act as a barrier, 

scattering, reflecting, and absorbing solar radiation, which results in obscured ground 

features and significantly impedes accurate image interpretation and processing. 

The Imperative for Cloud Removal 

The primary objective of cloud removal is to reconstruct the underlying surface 

information obscured by atmospheric obstructions. This process is not merely an 

aesthetic enhancement but a vital preprocessing step that unlocks the full analytical 
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potential of satellite data. As illustrated in Fig. 1.1 the goal is to develop a model that 

can take a cloudy image as input and produce a high-quality, cloud-free output, 

thereby revealing the hidden landscape. 

 

Figure 1. 

The conceptual model for cloud removal, which takes a cloudy satellite image as input and 

generates a cloud-free image as output. 

Taxonomy of Clouds in Remote Sensing 

Clouds in satellite imagery manifest in various forms, each presenting distinct 

challenges for detection and removal algorithms. They are generally categorized into 

three primary types, as visualized in Fig. 1.2 

✓ Thin Clouds: These are partially translucent, allowing some spectral information of 

the underlying ground features to be discerned. In such cases, recovery of the original 

data from a single image is often feasible. 

✓ Thick Clouds: Characterized by their opacity and density, thick clouds completely 

obscure the land surface. The information in these areas is entirely lost necessitating 

the use of multi-temporal data from different dates for reconstruction. 

✓ Cloud Shadows: These are dark regions on the ground caused by thick clouds 

blocking direct sunlight. They often coexist with the clouds themselves and require 

separate identification and correction 

The critical importance of effective cloud removal is underscored by its wide-ranging 

applications: 

Monitoring Changes Through Time: Enables consistent tracking of dynamic processes 

such as deforestation, glacier retreat, urbanization, and agricultural growth cycles 

Accurate Land Cover and Land Use Mapping: Provides clear, unobstructed views 

necessary for precise classification and mapping of forests, water bodies, soil types, 

and urban infrastructure. 

Disaster Management and Response: Delivers crucial, immediate, and unobstructed 

imagery for rapidly assessing the extent of damage from floods, earthquakes, wildfires, 

and other natural catastrophes. 
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Figure 2.  

Different types of clouds in satellite imagery: cloud shadow, thick cloud, and thin cloud (from 

left to right). 

Evolution of Cloud removal Techniques 

Over the years, a multitude of methods have been developed to tackle the cloud 

removal problem, which can be broadly classified into traditional and deep learning-

based approaches. Traditional techniques are further subdivided based on their 

underlying methodology and use of reference data 

Multi-spectral Methods: These techniques leverage the unique spectral signature of 

clouds across different electromagnetic bands. They are often effective for removing 

thin clouds but can result in hazy or imperfect reconstructions. Notable methods 

include the Haze Optimal Transformation (HOT) and various approaches based on 

the Radiation Transmission Model (RTM) [2]. 

Multi-temporal Methods: These approaches utilize multiple images of the same 

geographical location captured at different times to reconstruct a cloud-free 

composite. They are essential for removing thick clouds but operate on the critical 

assumption that the land surface has not undergone significant change between the 

acquisition dates.While these traditional methods have been foundational and are 

still in use they possess inherent limitations[3]. They often involve complex manual 

thresholding, struggle with the vast diversity of cloud patterns and underlying terrains, 

and frequently lack generalizability across different geographical regions and seasons. 

The Paradigm Shift: Deep Learning 

The advent of deep learning has revolutionized the field of image processing, offering 

a powerful, data-driven alternative to traditional algorithms. Convolutional Neural 

Networks (CNNs), in particular have demonstrated exceptional performance in tasks 

such as image classification, segmentation, and restoration [4]. Their ability to 

automatically learn hierarchical and multi-scale features directly from data makes 

them exceptionally suitable for the complex, non-linear problem of cloud removal. 
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Figure 3.  

A standard architecture of a deep learning network, showcasing multiple layers for feature 

extraction and transformation. 

Among the various deep learning architectures, Generative Adversarial Networks 

(GANs) have shown remarkable success in image-to-image translation tasks. In a GAN 

framework, a generator network learns to create realistic cloud-free images from 

cloudy inputs, while a discriminator network learns to distinguish these generated 

images from real, cloud-free ones. This adversarial training process creates a 

competitive environment that drives the generator to produce increasingly 

convincing and high-fidelity results, effectively "filling in" the obscured regions with 

semantically plausible content [5]. 

Despite the availability of various techniques, cloud cover remains a persistent and 

significant obstacle in optical satellite remote sensing. The core problems are 

threefold: 

Data Loss: Clouds obscure ground features, leading to gaps in spatial and temporal 

data records. 

Analytical Disruption: The presence of clouds disrupts the continuity of time-series data, 

making it difficult to monitor environmental changes reliably. 

Reduced Applicability: The utility of satellite imagery for critical applications in 

agriculture, disaster management, and climate science is substantially diminished. 

Therefore, there is a pressing need for a robust, automated, and generalizable 

framework that can effectively remove clouds and accurately reconstruct the 

underlying surface information to enhance the reliability, clarity and usability of 

satellite data. 

Research Objectives and Significance 

The primary objective of this research is to develop and evaluate a deep learning-

based framework for the effective removal of clouds from Sentinel-2 multispectral 

imagery. The significance of this work is multi-faceted: It aims to maximize the utility of 

the unique and valuable observational data provided by satellites like Sentinel-2. By 

producing cloud-free imagery, it enables more precise, comprehensive, and 

continuous investigations into vital areas such as land cover mapping, vegetation 

health monitoring, and urban sprawl analysis. It contributes to a clearer, more 

complete, and uninterrupted view of the Earth, which is fundamental for advancing 

scientific understanding, improving resource management, and supporting 

sustainable development goals. By leveraging advanced deep learning models, this 
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research seeks to overcome the limitations of traditional methods and deliver a 

powerful and efficient tool for generating high-quality, cloud-free satellite imagery. 

Existing Literature  

The challenge of cloud contamination in optical satellite imagery has driven 

significant research efforts, evolving from traditional threshold-based methods to 

sophisticated deep learning paradigms. This review synthesizes the key developments 

in cloud detection and removal, highlighting the transition to data-driven approaches 

and the emergence of Generative Adversarial Networks (GANs) as a state-of-the-art 

solution. 

The Evolution of Cloud Detection 

Early cloud removal methodologies were inherently dependent on accurate cloud 

detection, or "cloud masking." Initial techniques relied on spectral thresholding and 

physical models. For instance, [6] demonstrated that Artificial Neural Networks (ANNs) 

could outperform standard processors like Fmask and Sen2Cor particularly in 

challenging deep-water environments with high noise and sunglint, by effectively 

utilizing bands like the 'cirrus' band. The advent of Convolutional Neural Networks 

(CNNs) marked a significant leap forward. [7] proposed Cloud-AttU a U-Net-based 

model incorporating an attention mechanism, which significantly improved 

segmentation accuracy by enabling the network to focus on cloud-relevant features. 

This theme of architectural refinement continued with [8], who introduced the STCCD 

network, a hybrid model combining Swin Transformers and CNNs to capture both local 

and global features, thereby enhancing the detection of thin clouds and complex 

cloud shapes. Further innovations focused on efficiency and accuracy under specific 

conditions. [9] developed CD-FM3SF a lightweight network designed to handle all 

Sentinel-2A spectral bands, improving multiscale feature extraction with minimal 

computational overhead. For high-resolution imagery [10] conducted a 

comprehensive comparison, finding that a U-Net-based CNN significantly 

outperformed a Random Forest model, underscoring the importance of spatial 

context in very high-resolution (VHR) image classification. 

Paradigm Shift to Deep Learning-Based Cloud Removal 

While detection is crucial, the field has progressively shifted towards end-to-end 

removal, directly reconstructing the underlying surface. Pioneering this approach [11] 

proposed a Cloud-GAN that learned the mapping between cloudy and cloud-free 

images using a cycle-consistent adversarial loss (CycleGAN), eliminating the need for 

perfectly paired training data. This was a significant step towards practical 

application. Subsequent research focused on enhancing the realism and fidelity of 

the generated images. [12] introduced an edge-filtered conditional GAN (MEcGAN) 

that incorporated Near-Infrared (NIR) band data and edge information to improve 

the reconstruction of cloud-covered structures, demonstrating superior performance 

in urban areas. Similarly, [13] proposed an Attention-based Mechanism GAN 

(AMGAN-CR) for Landsat 8 imagery, which generated a spatial attention map to 

guide the network to focus on cloud-affected regions, outperforming several 

benchmark models. To address the challenge of limited labeled data [14] developed 

a semi-supervised, mutually beneficial guide network for thin cloud removal. This 

architecture leveraged both labeled and unlabeled data, allowing two "benefactor" 

networks to guide each other's training iteratively, leading to more robust 

performance. For the critical task of thick cloud removal [15] introduced the Spatially- 
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and Spectrally-connective Tensor Decomposition (SSTC-CR) method, which 

effectively exploited the complex multi-dimensional relationships in satellite imagery 

to recover missing information with high colorimetric accuracy. 

Synthesis and Research Gap 

The literature confirms a clear trajectory from simple detection to complex, generative 

removal. GAN-based architectures have established themselves as the forefront for 

this task due to their ability to produce semantically plausible and realistic image 

content. However, many models face challenges with generalizability, computational 

complexity, and effectively leveraging the full information in multispectral data. This 

research aims to build upon this foundation by implementing and evaluating a Spatial 

Attention GAN (SPA-GAN), which is specifically designed to leverage spatial attention 

mechanisms to focus on cloud-obscured regions within multispectral Sentinel-2 

imagery, thereby contributing to the development of more efficient and accurate 

cloud removal solutions. 

Methodology: A Deep Learning Framework for Cloud Removal in 

Multispectral Satellite Imagery 

This section details the comprehensive methodology developed to address the 

challenge of cloud occlusion in Sentinel-2 satellite imagery. The approach integrates 

data acquisition, preprocessing, and a novel deep learning architecture to generate 

high-quality, cloud-free multispectral images. 

Experimental Workflow and Design 

The study was designed to develop and validate a cloud removal framework 

capable of processing Sentinel-2 multispectral data. The overarching goal was to 

enhance data usability for applications in environmental monitoring, resource 

management, and disaster response. The experimental workflow, illustrated in Figure 

3.1, encompassed four primary phases: (1) environment configuration and library 

setup, (2) data collection and preprocessing, (3) implementation and training of the 

deep learning model, and (4) performance evaluation. 

 
Figure 4. 

Overall experimental workflow for cloud removal. 

Computational Environment and Software Stack 

A reproducible computational environment was established using the Anaconda 

Python distribution to ensure consistency and manage dependencies. The core 

implementation and experimentation were conducted within Jupyter Notebooks, 
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providing an interactive platform for iterative development and analysis. The software 

stack, depicted in Figure 3.2, leveraged several critical libraries: TensorFlow and Keras 

formed the foundation for building and training deep neural networks; OpenCV (cv2) 

and NumPy were used for image manipulation and numerical computations; 

Matplotlib facilitated the visualization of results; and the Glob module assisted in file 

handling for batch processing. Authentication with the Google Earth Engine (GEE) API 

was configured to enable direct access to satellite imagery. 

 

Figure 5. 

Schematic of the computational environment and software stack. 

DATA ACQUISITION AND PREPROCESSING 

Data Sources and Collection 
A multi-source data strategy was employed to ensure model robustness and 

generalizability. The primary data source was Sentinel-2 Level-1C satellite imagery, 

accessed via the GEE platform. To construct a paired dataset for supervised learning, 

image pairs of the same geographical area one with significant cloud cover and a 

corresponding cloud-free reference were collected. This core dataset was 

augmented with the public VIRSCLOUD_vanilla dataset from Kaggle and 

the RICE1 dataset, enriching the variety of cloud types and land cover scenarios. 

Data Preprocessing Pipeline 

All collected images underwent a standardized preprocessing pipeline. To maintain 

uniformity and computational efficiency, images were resized to a fixed resolution of 

512x512 pixels using bilinear interpolation within the GEE environment. The cloud-

contaminated and corresponding cloud-free images were then exported in the 

Tagged Image File Format (TIFF) to preserve radiometric integrity and geospatial 

information. This process, summarized in Figure 3.5, resulted in a curated dataset ready 

for model training. 
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Figure 6. 

Data preprocessing pipeline for satellite imagery. 

Dataset Characteristics 

The final dataset possessed several key characteristics essential for effective deep 

learning: 

Multispectral Nature: It leveraged multiple spectral bands, allowing the model to 

discriminate between clouds and underlying surfaces based on distinct spectral 

signatures. 

Structured Labels: The data was structured in a paired format (cloudy input, cloud-

free target), providing clear supervisory signals for training. 

Spatial Complexity: The inclusion of diverse geographies and cloud formations 

ensured the model learned to handle a wide array of real-world scenarios. 

Deep Learning Architecture: Spatial Attention Generative Adversarial Network 

(SPA-GAN) 

The core of our methodology is a custom Generative Adversarial Network (GAN) 

incorporating a spatial attention mechanism, termed SPA-GAN. The GAN framework 

was chosen for its proven ability in image-to-image translation tasks. 

Generative Adversarial Network Framework 

The GAN, illustrated in Figure 3.7, consists of two neural networks trained simultaneously 

in a competitive manner. The Generator (G) learns to map a cloudy input image to a 

cloud-free output, while the Discriminator (D) learns to distinguish between the 

generator's outputs and real cloud-free images. This adversarial process is formalized 

by the objective function. 
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Figure 7. 

Standard architecture of a Generative Adversarial Network (GAN). 

SPA-GAN Generator with Spatial Attention 
The generator in our SPA-GAN model is a deep neural network named the Spatial 

Attention Network (SPANet). As shown in Figure 3.8, its architecture begins with a 

convolutional layer, followed by a series of residual blocks and the novel Spatial 

Attentive Blocks (SAB). The SAB, detailed in Figure 3.9, is designed to generate an 

attention map that identifies and weights cloud-covered regions. This allows the 

network to focus its processing power on reconstructing the obscured areas, 

significantly enhancing the recovery of fine spatial details. The network concludes 

with standard residual blocks and a final convolutional layer that produces the cloud-

free image. 

 

Figure 8. 
Architecture of the Spatial Attention Network (SPANet) generator. 

                

 
Figure 9. 

Detailed structure of the Spatial Attentive Block (SAB). 
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SPA-GAN Discriminator 
The discriminator, outlined in Figure 3.11, is a convolutional neural network that 

performs two critical functions. First, it classifies image patches as "real" or "generated." 

Second, and more importantly, it incorporates a spatial attention mechanism that 

produces a feedback map highlighting regions where the generator's output lacks 

realism. This focused feedback guides the generator to make more precise 

improvements in subsequent training iterations. 

 

Figure 10. 

Architecture of the SPA-GAN discriminator. 

Model Training and Configuration 

The SPA-GAN model was trained end-to-end using the prepared dataset. The training 

process involved optimizing both networks concurrently [16]. The generator was 

trained to minimize the loss between its output and the target cloud-free image, while 

also fooling the discriminator. The discriminator was trained to maximize its accuracy 

in distinguishing real from generated images. 

Key hyperparameters for the training process were meticulously selected 

Optimizer: Adam optimizer was used for its adaptive learning rate capabilities 

Learning Rate: A value of 5e-5 was chosen to ensure stable convergence. 

Batch Size: Training was conducted with a batch size of 12, balancing GPU memory 

constraints and gradient estimation stability. 

Training Duration: The model was trained for 1500 epochs to ensure sufficient learning 

and convergence. 

Loss Functions: A combination of adversarial loss from the GAN framework and a pixel-

wise loss (e.g., Mean Squared Error) was used to ensure both perceptual quality and 

pixel-level accuracy [17]. 

This comprehensive methodology establishes a robust foundation for generating 

cloud-free Sentinel-2 imagery, leveraging advanced deep-learning techniques to 

address a significant challenge in remote sensing. 

Experimental Results and Analysis 

This section presents a comprehensive evaluation of the proposed SPA-GAN model 

for cloud removal in Sentinel-2 satellite imagery [18]. The performance is assessed 

through both quantitative metrics and qualitative visual analysis, followed by a 

discussion of the findings and their implications. 
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Quantitative Performance Evaluation 

To objectively evaluate the cloud removal capability of the SPA-GAN model, two 

standard image quality assessment metrics were employed: Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index (SSIM)[19]. The PSNR value of 22.64 dB 

indicates that the model successfully reconstructed the underlying scene with 

reasonable fidelity, though there remains room for improvement in exact pixel-value 

matching. More significantly, the SSIM score of 0.60 demonstrates that the model 

effectively preserved the structural information, texture and luminance patterns of the 

original scene which is crucial for maintaining geospatial integrity in remote sensing 

applications. 

 

Figure 11. 

Quantitative evaluation metrics (PSNR and SSIM) for cloud removal performance. 

The progression of the SSIM metric throughout the training process, shown in Figure 4.2, 

reveals a consistent improvement in structural preservation as training advanced, with 

the metric stabilizing after approximately 1200 epochs, indicating model 

convergence. 

 

Figure 12. 

Structural Similarity Index (SSIM) progression across training epochs. 
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Training Dynamics and Model Convergence 

The training process of the SPA-GAN model was monitored through the generator and 

discriminator loss functions. Figure 4.3 illustrates the loss trajectory at epoch 1450 

showing the characteristic oscillatory pattern of a well-functioning GAN where both 

networks are competitively learning. By epoch 1500 (Figure 4.4) the losses had 

stabilized, indicating that the model had reached a Nash equilibrium where neither 

network could easily improve without the other adapting. 

Figure 13. 

Generator and discriminator loss values at 1450 training epochs 

 

Figure 14. 

Stabilized loss values at 1500 training epochs, indicating model convergence. 

The model was trained with a batch size of 12 (Figure 4.5), which provided a balance 

between computational efficiency and gradient stability. This configuration allowed 

for effective learning while managing memory constraints during the extensive 

training process. 

Figure 15. 

Batch size configuration for model training. 
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Qualitative Visual Assessment 

The visual results of the SPA-GAN model provide compelling evidence of its 

effectiveness in cloud removal. Figure 4.6 demonstrates the model's capability to 

remove extensive cloud cover while recovering underlying terrain features. The 

generated image maintains spatial consistency and preserves important 

geographical structures that were previously obscured. 

Figure 16. 

Cloud removal results using SPA-GAN model. Left: Original cloudy image. Right: Processed 

cloud-free output. 

Comparative analysis with a baseline GAN approach (Figure 4.7) highlights the 

advantages of the spatial attention mechanism in SPA-GAN. The standard GAN 

produces blurrier reconstructions with less defined edges, whereas SPA-GAN 

generates sharper results with better-preserved textures, particularly in regions 

previously covered by thin clouds. 

 

Figure 17. 

Comparison of cloud removal results between standard GAN (left) and SPA-GAN (right). 

DISCUSSION 

The experimental results demonstrate that the proposed SPA-GAN framework 

effectively addresses the challenge of cloud removal in multispectral satellite imagery. 

The integration of spatial attention mechanisms proves particularly valuable, as it 

enables the model to focus computational resources on cloud-affected regions while 

preserving intact areas. This targeted approach explains the superior performance in 

maintaining structural integrity, as reflected in the SSIM scores.The adversarial training 

paradigm complemented by traditional pixel-wise losses, allows the model to learn 

both the precise reconstruction of surface features and the photorealistic qualities of 

cloud-free imagery. The extended training duration of 1500 epochs was necessary to 
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achieve stable convergence, which is consistent with the complexity of learning 

mappings between cloud-obscured and clear satellite scenes.The model shows 

particular proficiency in handling heterogeneous cloud coverage, successfully 

removing both thick and thin clouds while recovering plausible terrain information. This 

capability is crucial for practical applications in remote sensing, where cloud cover 

often appears in varying densities across a single scene.However, some limitations 

were observed. The PSNR score, while acceptable suggests that perfect pixel-level 

reconstruction remains challenging, particularly in areas with complete cloud 

occlusion where no ground information is available in the input. In such cases, the 

model must hallucinate plausible content based on contextual information from 

surrounding areas and learned patterns from the training data [22]. 

The qualitative results confirm that the model successfully maintains multispectral 

characteristics in the output, which is essential for downstream applications such as 

vegetation monitoring, land cover classification, and change detection. The 

preserved structural similarity indicates that the generated imagery would be suitable 

for analytical purposes beyond visual inspection.Future work could focus on 

incorporating temporal information from multi-date satellite acquisitions to further 

improve reconstruction accuracy, particularly in heavily cloud-obscured regions. 

Additionally, exploring domain adaptation techniques could enhance the model's 

generalization across different geographical regions and seasonal variations. The SPA-

GAN framework presents a robust solution for cloud removal in Sentinel-2 imagery, 

effectively balancing quantitative performance with visual quality while maintaining 

the structural integrity required for remote sensing applications [23]. 

CONCLUSION 

This research successfully addressed the critical challenge of cloud occlusion in 

multispectral satellite imagery by developing and implementing a deep learning-

based framework. The proposed method leverages a Spatial Attention Generative 

Adversarial Network (SPA-GAN) to effectively remove clouds and reconstruct high-

quality, cloud-free images from Sentinel-2 data. 

The study's key contributions and findings are summarized as follows: 

✓ Effective Model Implementation: The SPA-GAN model was adeptly applied to 

the image-to-image translation task of cloud removal. Its integrated spatial attention 

mechanism proved crucial, enabling the model to focus on cloud-contaminated 

regions and prioritize their reconstruction, thereby preserving essential spatial details 

and textures of the underlying terrain. 

✓ Robust Dataset Construction: A heterogeneous dataset was curated by 

merging the VIIRSCLOUDS-Vanilla dataset from Kaggle with real-world Sentinel-2 

imagery. This strategy provided a diverse and rich training set encompassing a wide 

variety of cloud types and land cover scenarios, which enhanced the model's 

generalizability and robustness. 

✓ Promising Performance: The model was rigorously trained over 1500 epochs and 

evaluated using standard image quality metrics. The results demonstrated that SPA-

GAN is capable of generating realistic cloud-free imagery. Quantitative evaluations 

using the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) 

confirmed the model's proficiency in maintaining structural integrity and reducing 

visual artifacts in the reconstructed images. 
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✓ Enhanced Data Usability: The successful removal of clouds significantly 

improves the clarity and reliability of satellite data. This directly increases the usability 

of Sentinel-2 imagery for time-series analysis and downstream applications, unlocking 

its potential for precise environmental monitoring, agricultural management, and 

effective disaster response. 

In conclusion, this work establishes the SPA-GAN as a powerful and effective solution 

for cloud removal in multispectral satellite imagery. The outcomes pave the way for 

more accurate and unobstructed observation of the Earth's surface. Future work will 

focus on optimizing the model for computational efficiency, testing its performance 

on other satellite sensors, and further refining its ability to handle extreme cloud 

coverage and complex landscapes. 
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